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Abstract. This paper deals with a new iterative Network Anomaly Detection Algorithm – 
NADA, which accomplishes the detection, classification and identification of traffic anomalies. 
NADA fully provides all information required limiting the extent of anomalies by locating 
them in time, by classifying them, and identifying their features as, for instance, the source and 
destination addresses and ports involved. To reach its goal, NADA uses a generic multi-
featured algorithm executed at different time scales and at different levels of IP aggregation. 
Besides that, the NADA approach contributes to the definition of a set of traffic anomaly 
behavior-based signatures. The use of these signatures makes NADA suitable and efficient to 
use in a monitoring environment. 
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1   Introduction 

The lack of security in networks is an issue that network administrators would like 
to solve on the fly, independently of the network size. Being anomalies a structural 
part of traffic, it is important to completely detect, classify (i.e., determining the type 
of anomaly) and identify (i.e., determining all the packets and flows involved in the 
anomaly) them in order to act adequately. 

NADA aims at being completely generic and works on any kind of time series 
issued from incoming traffic (online) or packet traces (offline). To illustrate NADA, 
in this paper we will consider three different data time series: Number of packets per 
unit of time; Number of bytes per unit of time; and Number of new flows per unit of 
time. 

Other approaches for detecting traffic anomalies exist. However, as far as we 
know, none permits simultaneously the detection, classification and identification of 
traffic anomalies. At most, some recent works introduced some level of classification 
in the algorithms being proposed, using information provided by IP features [1] [2]. 
Nevertheless, anomaly classification and identification remains an important, unmet 



challenge, since none of the proposals exploited exhaustively the richness of IP 
feature information to provide accurate information to the involved parties. NADA’s 
classification and identification stages are developed in an easy way for both 
configuring the tool and analyzing its outputs. This aspect is particularly important 
when one of the main goals is to limit the negative effects of an anomaly occurrence 
in real networks.  

The rest of this paper is organized as follows: Section 2 gives an overview of the 
NADA algorithm presenting its main features. Section 3 presents anomaly signatures, 
and how these signatures can be used for anomaly classification, and section 4 
concludes the paper, summarizing our ongoing research. 

2   Network Anomaly Detection Algorithm – NADA 

NADA has been defined as a multi-scale, multi-criteria, and multi-level of IP 
aggregation approach [3]. NADA’s algorithm has two phases. The first one is devoted 
to the detection and classification of traffic anomalies, while the second phase targets 
the anomalous flows by fully identifying them. 

The core idea used in NADA’s detection stage is that any anomaly will be 
responsible for some level of variation at least on one of the criterions considered, at 
some time-scale and at some level of IP aggregation. Variations are pointed by using 
the formula below (1), in which X is a data time series directly obtained from traffic 
traces, and P is a data series that is obtained from X, and in which each value is the 
difference between two consecutive values of X. Each value pi of P corresponds then 
to a variation. Significant variations might be associated to an anomaly. Significant 
variations were named deltoids by Cormode et al. [4] who used them to detect 
significant traffic changes. 
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The mean and the standard deviation, E(p) and σ respectively, of each time series 
are calculated and used to define a threshold. Each value of the time series that 
exceeds the threshold might point a traffic anomaly. This sort of filtering can be more 
or less coarse grained depending on the value of the adjustment parameter k of the 
formula, where smaller values of k fine-grain the search. Currently, the value of k is 
assigned manually, ranging from 0.5 to 2.5, being the value 2.0 the most used. These 
values were obtained empirically, after successive executions of NADA from where it 
was seen that for values of k greater than 3.0 no significant variations are detected, 
while for values of k smaller than 0.5 the formula is not effective because 

)()( pEkpE ≈+ σ . 
The formula above is applied recursively. Each level of iteration uses a different 

level of traffic aggregation. At the first iteration the all IP space is considered, and 



time slots of duration ∆, with possible anomalies, are spotted. At each new iteration, 
flows in the time slots previously spotted are analyzed, from more generic ones (mask 
/1) to more specific ones (mask /32).  

The classification stage is based on behavior-based signatures. These signatures 
were obtained through the execution of NADA over several traces. The anomalies 
signaled by our algorithm presented always a set of characteristics that could be used 
to identify them in a univocal way. Finally, the purpose of anomaly identification is to 
allow its complete mitigation. This third stage then includes an exhaustive description 
of the anomaly, using all the information previously collected. 

3   Classification Based on Anomaly Signatures 

To assess the accuracy and performance of NADA, a set of traces created in the 
framework of the MetroSec Project, between 2004 and 2006 was used. This 
repository spans different types of anomalies, legitimate and illegitimate ones, with 
different levels of intensity. Also, different types of anomaly generators (as Hping, 
Iperf, Trinoo, TFN2k) were used in order to improve the quality of the database.  

The successive utilization of NADA showed that anomalies of a specific type have 
a consistent signature. Such signatures are obtained by looking how the distribution of 
source and destination IP addresses and ports relate to each other in candidate-
anomalous flows. Running NADA on the traces collected permitted the isolation of 
several types of anomalies. In this paper we will focus on DDoS attacks. 

When analyzing the traces we have obtained two different types of DDoS 
signatures, depending on the number of destination ports that are flooded. It was also 
observed that these signatures are independent of the tool being used to perpetrate the 
attacks, and because of that may be considered as behavior-based signatures, instead 
of regular signatures, which are dependent of specific parameters of a specific 
anomaly. 

Each behavior-based signature obtained can be represented as a sequence of four 
plots that constitute what we have called the graphical signature. Figure 1 is a 
representation of the DDoS signature behavior-based of type nIP sources using nPorts 
attacking 1IP destination using nPorts. The four plots show how the different source 
and destination addresses/port relate to each other in flows associated to a DDoS. This 
sequence of shapes is detected at all levels of IP aggregation at the destination, 
ranging from /8 to /32. This signature is unique for a given type of attack when 
analyzing the correct time series, packets and bytes. 

All plots in Figure 1 relate the distribution of source with destination information. 
So, the leftmost plot shows the IP sources that are flooding the destination IP address. 
The next plot, inserts information about the ports that were used by the sources. It can 
be seen that each packet sent was using a different port number. In the plot this is 
denoted by a full straight line. The third plot of the signature adds the port number 
information to each destination. In our DDoS case it is possible to see that different 
ports of the target are being flooded (diagonal line). Finally, the rightmost plot shows 
how destination ports are affected by the anomaly. This plot is important to 
differentiate network scan from port scan attacks. 



    
Fig. 1.  DDoS behavior-based signature without noise. Type of DDoS: n IP Sources, n Source 
Ports : 1 IP Destination, n Destination Ports. 

The Receiver Operating Characteristic (ROC) curves were used to obtain some 
information about the sensitivity of NADA (they are not showed due to the lack of 
space). The analysis of the curves permitted us to verify that NADA is efficient 
whatever the value of k is, and that such ROC curves obtained on our documented 
anomalous traces data set can help comparing the performances of different IDS. 

4   Conclusion 

In this paper, we have presented NADA an algorithm for detecting, classifying and 
identifying anomalies of any type in network traffic, and that provides information 
about the parties responsible of the anomaly, in a way easily understandable by 
technicians who are operating and managing networks.  

Moreover, the information provided by NADA is delivered in graphical and textual 
format. If the first format could be interesting for administrator to discover, at a 
glance, what is happening in the network, the latter one could be easily used to trigger 
other types of signals or actions, suited to the anomaly that is occurring. 

To conclude this work, we intend to run NADA over traces for which we do not 
know about the presence of anomalies, to test the efficiency and robustness of NADA. 
Future work also includes the design of a selection method for the k factor, as it is for 
the moment hand made. 
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